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Stellarator symmetry
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Abstract

A simple and general definition of stellarator symmetry is presented and its relation to previous definitions discussed. It is
shown that the field-line flow in systems possessing stellarator symmetry is time-reversal invariant if the the toroidal angle is
regarded as “time”.
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1. Introduction

The possession of a reversing symmetry is a sim-
plifying feature of many dynamical systems [1,2]. For
example, a Hamiltonian,H(q, p, t), which is an even
function of the momentump and timet generates a
dynamics which is invariant under time reversalt 7→
−t combined with the phase-space involutionq 7→
q, p 7→ −p. Knowledge that a system has such a
symmetry is useful when trying to locate invariant
sets since it implies thatp = 0 is a symmetry plane
– invariant sets are symmetric about the symmetry
plane, or at least occur in pairs that are symmetric
about it. For example if only a single pair of ellip-
tic and hyperbolic periodic orbits of a given rotation
number survives a small perturbation of an integrable
Hamiltonian system (the typical case) then they must
both be symmetric. In a 112-dimensional Hamiltonian
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system, by the Poincaré–Birkhoff theorem [3], the el-
liptic and hyperbolic orbits interlace, so if the system
possesses the above symmetry, then one of these two
orbits must have a point on the symmetry line, which
makes the search for periodic orbits much easier [4].

In most Hamiltonian systems in physics, time-
reversal invariance is obvious and exact. However, in
the case of magnetic field-line flow in toroidal mag-
netic plasma confinement devices, which is known
to be a Hamiltonian system [6, pp. 170–175], the
“time” is a toroidal angle, and in a non-axisymmetric
system it is not obvious a priori that the dynamics is
time-reversal invariant.

Such non-axisymmetric systems occur in the class
of magnetic confinement devices known as stellara-
tors, and all modern stellarators are designed (and, to
within engineering tolerances, constructed,) to have
a certain symmetry known as “stellarator symmetry”.
The Large Helical Device at the National Institute
for Fusion Science, Japan, and Wendelstein 7X at the
Max-Planck-Institut f̈ur Plasmaphysik, Germany, are
very large experiments under construction, while the
4-field period heliac TJ-II at CIEMAT, Spain, has just
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Fig. 1. Schematic of the coil set for the H-1 heliac, showing how
it produces a 3-fold symmetric magnetic field, illustrated by
lines on a magnetic surface (invariant torus). This configuration
possesses the property of stellarator symmetry defined in the
text.

commenced operation and the 3-field period heliac H-
1 at The Australian National University (see Fig. 1)
has been running for some years [7].

Because these devices are inherently three-
dimensional (in contrast to the axisymmetry of an
ideal tokamak) their design poses considerable con-
ceptual and computational challenges. It is thus im-
portant to find and exploit any symmetries that they
possess. In this note we define stellarator symmetry
in its simplest and most general form and show that
it may be regarded as a time-reversal symmetry of
the magnetic field line flow. Its relation to a symme-
try of curvilinear coordinates, also called stellarator
symmetry, is discussed.

2. Stellarator symmetry

Consider a vector fieldF(r), wherer is the position
vector. (The examples considered in this paper are the
current densityJ and magnetic fieldB). Representing
the position vector in cylindrical coordinates,

r = ρeρ(φ)+ zez, (1)

where we use the orthonormal basiseρ ≡ ∇ρ, eφ ≡
ρ∇φ, ez ≡ ∇z, we define the symmetry opera-
tion

I0f (ρ, φ, z) ≡ f (ρ,−φ,−z) (2)

for an arbitrary functionf (ρ, φ, z). This operation is
a cylindrical inversion symmetry about the half line
{φ = 0, z = 0, ρ > 0}.

Then we sayF possessesstellarator symmetryif
there exists a cylindrical coordinate system(ρ, φ, z)
such that the following symmetry obtains forρ > 0,
φ ∈ [0, 2π) andz ∈ R

I0[Fρ, Fφ, Fz] = [−Fρ, Fφ, Fz], (3)

whereFρ, Fφ andFz are the components ofF with
respect to the orthonormal basis defined above.

Lemma 1. If stellarator symmetry exists with respect
to the cylindrical inversion operationI0, defined about
the half line{φ = 0, z = 0}, then it also exists with
respect to the operationIπ defined about the half line
{φ = π, z = 0}.

This follows by making the substitutionφ 7→ φ+π
in Eq. (3) and invoking the 2π -periodicity of physical
quantities.

Stellarators are typically composed of a number of
theoretically identical sectors, called field periods, giv-
ing rise to a discrete rotational symmetry of the sys-
tem. Thus, if there is a symmetry half-line in one field
period there must be a corresponding symmetry half-
line in all field periods:

Lemma 2. If stellarator symmetry exists with respect
to I0 for a vector field possessingN -fold discrete sym-
metry about thez-axis, then stellarator symmetry also
exists with respect to the symmetry operationsI2n de-
fined as cylindrical inversions in the half lines{φ =
2nπ/N, z = 0}, wheren = 1, 2, . . . , (N − 1).

This follows directly from the definition ofN -fold
symmetry as applied to the half line in the definition
of stellarator symmetry,{φ = 0, z = 0}.

Applying the discrete symmetry to the half line
{φ = π, z = 0} of Lemma 1 we see also that, if
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N is odd, stellarator symmetry also applies about
a symmetry half-line in the middle of each field
period:

Lemma 3. If stellarator symmetry exists with re-
spect to I0 for a vector field possessingN -fold
discrete symmetry about thez-axis, whereN is
an odd integer, then stellarator symmetry also
exists with respect to the symmetry operations
I2n−1 defined as cylindrical inversions in the half
lines {φ = (2n − 1)π/N, z = 0}, where n =
1, 2, . . . , N .

(In the case ofN an even integer,φ = π is equiv-
alent toφ = 0 and Lemma 1 is redundant.)

Suppose a spatial distribution of current densityJ
(including both coil and plasma currents) has stellara-
tor symmetry, i.e. Eq. (3) applies withF = J. Writ-
ing out Amp̀ere’s law∇ × B = µ0J in cylindrical
coordinates
[(

1

ρ

∂Bz

∂φ
− ∂Bφ

∂z

)
,

(
∂Bρ

∂z
− ∂Bz

∂ρ

)
,

1

ρ

(
(ρBφ)

∂ρ
− ∂Bρ

∂φ

)]
= µ0[Jρ, Jφ, Jz], (4)

and observing that [∂ρ, ∂φ, ∂z]I0f = I0[∂ρ,−∂φ,−∂z]
f , we see that Eq. (4) is consistent with the magnetic
field B alsosatisfying stellarator symmetry. Thus (as-
suming no magnetic field at infinity) it follows from
the uniqueness ofB that:

Lemma 4.A magnetic field possesses stellarator sym-
metry if and only if it is produced by a current distri-
bution with stellarator symmetry.

3. Field-line flow

For the purposes of this section we define field-line
flow by the equation of motioṅr = ρB/Bφ , where
r is the position vector, whose time rate of change is
the “velocity” ṙ ≡ ρ̇eρ + ρφ̇eφ + żez. From theφ-
component of the equation of motion we recognize
that φ̇ = 1, so “time” t is identified with the toroidal

angleφ. The remaining two components form the two-
dimensional dynamical system

ρ̇ = ρ
Bρ

Bφ
, (5)

ż= ρ
Bz

Bφ
. (6)

From conservation of magnetic flux we see that
Eqs. (5) and (6) conserve the measureBφ dρ dz.
In fact [6, pp. 170–175], as discussed in Section 5,
field-line flow can be represented as a Hamiltonian
dynamical system, in which case the measure preserv-
ing property becomes the standard area-preservation
under time-evolution in 112-dimensional Hamiltonian
systems. In the present section it suffices to work in
non-canonical form.

From Eq. (3) (withF = B) we see that the dy-
namical system defined by Eqs. (5) and (6) istime-
reversal invariant under the phase-space involution
ρ 7→ ρ, z 7→ −z. It follows that if {ρ(φ), z(φ)} is
a field line then so also is{ρ(−φ),−z(−φ)} (though
not necessarily the same line). The intersection of an
invariant set with the half plane{φ = 0} is either
symmetric about the half line{φ = 0, z = 0} or is
one member of a pair that is symmetric, thus facilitat-
ing the search for periodic orbits (closed field lines)
just as in the Hamiltonian and area-preserving map
cases [4].

A recent practical application [5] is illustrated in
Fig. 2 which shows a Poincaré section in the sym-
metry plane{φ = 0} of the field line flow in the
H-1 heliac at the Australian National University, a
stellarator possessing stellarator symmetry. The “up-
down” symmetry of the flow is apparent and two
symmetric periodic orbits are in evidence – the el-
liptic and hyperbolic periodic orbits associated with
the (5, 3) island chain. Both periodic orbits always in-
tersect the symmetry line{φ = 0, z = 0}, which
makes their location easy. Three cases are shown,
each with slightly different vertical field coil currents,
showing an interchange of stability between the two
periodic orbits in the two outer cases and the vir-
tual disappearence of the island in the intermediate
case.
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Fig. 2. Manipulation of the (5, 3) magnetic island in the vacuum
field of H-1. On the left is the standard configuration. The
middle and right plots are obtained by variation of the currents
in the vertical field coils.

4. Flux coordinates

One of the main uses of stellarator symmetry has
been in simplifying the representation of the mapping
from a curvilinear coordinate system(s, θ, ζ ) based on
the magnetic field to real space cylindrical coordinates
(ρ, φ, z):

ρ = R(s, θ, ζ ),

z = Z(s, θ, ζ ),

φ = Φ(s, θ, ζ ).

(7)

Here s is coordinate labelling a continuous set of
nested tori,θ a poloidal angle coordinate increasing
by 2π on one circuit the short way around a torus
s = const, andζ is a toroidal angle increasing by 2π
the long way round. The existence of the symmetry
allows the Fourier representation ofR, Z andΦ to
be simplified by enabling the use of only a sine or a
cosine basis, sin(mθ − nζ ) or cos(mθ − nζ ), depend-
ing on the parity of the quantity in question under the
transformation to be defined below.

The toroidal angleζ can be taken to be the geomet-
ric angleφ [8,9], but often a more general angle is used
[6], whose level surfaces are not planar. A particularly
popular choice is to use “Boozer coordinates” [10,11].

Usually the coordinates is chosen so that the toris =
const are invariant under the magnetic field line flow if
possible. That is,B · ∇s should either vanish, if an in-
variant torus of the desired rotation number exists, or
else, the coordinate system should be constructed so
as to makeB·∇s small in some suitable sense [12,13].

Sometimes [8] stellarator symmetry is stated in
terms of the “up-down” symmetry illustrated in Fig. 2
– the existence of a plane,ζ ≡ φ = 0, such that
R(s, θ,0) = R(s,−θ, 0), Z(s, θ,0) = −Z(s,−θ, 0).
However, as we have seen above, stellarator sym-
metry must involve the fullφ-domain. A more sat-
isfactory definition isR(s,−θ,−φ) = R(s, θ, φ),
Z(s,−θ,−φ) = −Z(s, θ, φ) [9]. Generalizing the
choice of toroidal angleζ , define the symmetry
operation

S0g(s, θ, ζ ) ≡ g(s,−θ,−ζ ) (8)

for any functiong(s, θ, ζ ). Then this definition of stel-
larator symmetry becomes the property

S0f (R,Φ,Z) ≡ f (R,−Φ,−Z). (9)

We shall call any curvilinear coordinate system
having the symmetry Eq. (9)stellarator-symmetry
coordinates.

This is a rather different definition from the one put
forward in the present paper, Eq. (3), as it is a property
of the coordinate system, rather than a property of the
physical vector fields. However, it is closely connected
by the following:

Lemma 5.When acting on a quantity expressed in
stellarator-symmetry coordinates, the operationS0 is
equivalent to the operationI0 acting on the same quan-
tity expressed in cylindrical coordinates.

We can use this equivalence, for example, to
find how stellarator-symmetry coordinates, regarded
as functions of position, transform under cylindri-
cal inversion about the half line{φ = 0, z = 0}:
I0[s, θ, ζ ] = S0[s, θ, ζ ] ≡ [s,−θ,−ζ ].

The contravariant representation of stellarator sym-
metry in stellarator-symmetry coordinates is

S0[F s, F θ , F ζ ] = [−F s, F θ , F ζ ], (10)
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whereF s , Fθ andFζ are the contravariant compo-
nentsF ·∇s, F ·∇θ andF ·∇ζ , respectively. This may
be verified by using the identityF · ∇η ≡ Fρ∂ρη +
ρ−1Fφ∂φη+Fz∂zη, whereη is s, θ or ζ . Then replace
S0 by I0, using Lemma 5, and verify that the three
terms making upF ·∇η are each of odd parity underI0.

Note that, if the toruss = s0 = const is invariant
under the magnetic field line flow, thenBs(s0, θ, ζ ) ≡
0. Thus thes-component of Eq. (10) applied toB is
trivially satisfied, showing that it is compatible with
stellarator symmetry to base a coordinate system on
invariant tori (in so far as they exist).

We end this section by giving the covariant analogue
of Eq. (10)

S0[Fs, Fθ , Fζ ] = [−Fs, Fθ , Fζ ], (11)

whereFs , Fθ andFζ are the covariant components
F · ∂sr, F · ∂θ r andF · ∂ζ r, respectively. To show this,
use the identityF ·∂ηr ≡ Fρ∂ηR+RFφ∂ηΦ+Fz∂ηZ,
whereη is s, θ or ζ . Then Eq. (11) is easily verified
by checking the parity of each term.

5. Field-line Hamiltonian

We now make the special choices = ψ , where
2πψ is the toroidal flux function such that [6,12]

B(r) = ∇ψ × ∇θ + ∇ζ × ∇χ, (12)

Dotting Eq. (12) with∇θ and∇ψ we see that∂ψχ =
JBθ and∂θχ = −JBψ , whereJ ≡ 1/∇ψ ·∇θ×∇ζ
is the Jacobian of the transformation from Cartesian to
curvilinear coordinates. It is readily verified thatJ is
even underI0 orS0. Thus, from Eq. (11), ifB possesses
stellararator symmetry then∂ψχ is even underS0,
while ∂θχ is odd, whence we deduce thatχ is even.

The magnetic field line flow is equivalent to a
time-dependent 112-degree-of-freedom Hamiltonian
system [12]

θ̇ = ∂ψχ, (13)

ψ̇ = −∂θχ. (14)

where the dot represents the derivative with respect
to ζ . These equations are recognized as Hamilton’s

equations withζ acting like a time coordinate,ψ
playing the role of the momentum conjugate to the
angular position coordinate,θ , andχ ≡ χ(ψ, θ, ζ )

being the Hamiltonian.
Sinceχ is even underS0, we see that Eqs. (13) and

(14) are invariant underS0. Sinceζ is “time”, they are
time-reversal invariant under the phase-space involu-
tionψ 7→ ψ , θ 7→ −θ . This is in contrast to the usual
case in Hamiltonian mechanics when it is the mo-
mentum variable that changes sign in the involution.

6. Conclusion

We have shown that there is a simple time-reversal
symmetry for magnetic field-line flows possessing
stellarator symmetry. Unlike most cases of time-
reversal symmetry, stellarator symmetry is an artefact
of Man rather than a Law of Nature. Thus it can
never be exact and an interesting question is whether
breaking of stellarator symmetry (by design, due to
fabrication errors or due to plasma instabilities) de-
stroys time-reversal invariance or just makes the cor-
responding phase-space involution more complicated.

Another possible area for further investigation is
the application of the theory ofk-symmetry [14] to
stellarators due to theirN -fold discrete symmetry.
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